Simulations of the pressure and temperature unfolding of an -helical peptide

نویسندگان

  • Dietmar Paschek
  • S. Gnanakaran
  • Angel E. Garcia
چکیده

We study by molecular simulations the reversible folding unfolding equilibrium as a function of density and temperature of a solvated -helical peptide. We use an extension of the replica exchange molecular dynamics method that allows for density and temperature Monte Carlo exchange moves. We studied 360 thermodynamic states, covering a density range from 0.96 to 1.14 g cm 3 and a temperature range from 300 to 547.6 K. We simulated 10 ns per replica for a total simulation time of 3.6 s. We characterize the structural, thermodynamic, and hydration changes as a function of temperature and pressure. We also calculate the compressibility and expansivity of unfolding. We find that pressure does not affect the helix–coil equilibrium significantly and that the volume change upon pressure unfolding is small and negative ( 2.3 ml mol). However, we find significant changes in the coordination of water molecules to the backbone carbonyls. This finding predicts that changes in the chemical shifts and IR spectra with pressure can be due to changes in coordination and not only changes in the helical content. A simulation of the IR spectrum shows that water coordination effects on frequency shifts are larger than changes due to elastic structural changes in the peptide.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical investigation of heat transfer and pressure drop in a novel cylindrical heat sink with helical minichannels

This study numerically investigated heat transfer and fluid flow characteristics in a novel cylindrical heat sink with helical minichannels for the laminar flow of fluid with temperature-dependent properties. A finite volume method was employed to obtain the solution of governing equations. The effects of helical angle, channel aspect ratio, and Reynolds number, which were regarded as main para...

متن کامل

Equilibrium structure and folding of a helix-forming peptide: circular dichroism measurements and replica-exchange molecular dynamics simulations.

We have performed experimental measurements and computer simulations of the equilibrium structure and folding of a 21-residue alpha-helical heteropeptide. Far ultraviolet circular dichroism spectroscopy is used to identify the presence of helical structure and to measure the thermal unfolding curve. The observed melting temperature is 296 K, with a folding enthalpy of -11.6 kcal/mol and entropy...

متن کامل

Molecular dynamics simulations of helix denaturation.

An understanding of the structural transitions that an alpha-helix undergoes will help to elucidate such motions in proteins and their role in protein folding. We present the results of molecular dynamics simulations to investigate these transitions in a short polyalanine peptide (13 residues) both in vacuo and in the presence of solvent. The denaturation of this peptide was monitored as a func...

متن کامل

Folding study of an Aib-rich peptide in DMSO by molecular dynamics simulations.

To evaluate the ability of molecular dynamics (MD) simulations using atomic force-fields to correctly predict stable folded conformations of a peptide in solution, we show results from MD simulations of the reversible folding of an octapeptide rich in alpha-aminoisobutyric acid (2-amino-2-methyl-propanoic acid, Aib) solvated in di-methyl-sulfoxide (DMSO). This solvent generally prevents the for...

متن کامل

Unfolding proteins by external forces and temperature: the importance of topology and energetics.

Unfolding of proteins by forced stretching with atomic force microscopy or laser tweezer experiments complements more classical techniques using chemical denaturants or temperature. Forced unfolding is of particular interest for proteins that are under mechanical stress in their biological function. For beta-sandwich proteins (a fibronectin type III and an immunoglobulin domain), both of which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005